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On The Linear Span of A Binary Sequence Family with

Optimal Correlation Properties

ARO Grant W911NF-07-1-0148

Final Report

John Q. Liu
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Abstract

Sequences are critical for anti-jamming and security in spread spectrum commu-
nications networks. The complexity to break sequence is measured by linear span
of sequence. The linear span of a sequence is the lowest degree of the characteristic
polynomials that can generate the sequence. A new family of sequences with opti-
mal correlation properties is constructed for the generalized Kasami set. A lower
bound on the linear span is established. It is proved that with suitable choices of
parameters, the linear span of this family is exponentially larger than that of either
No sequences or TN sequences. A class of sequences with ideal autocorrelation is
also proved to have large linear span. Therefore, the new family of sequences can
be employed by future spread spectrum networks to have better security and lower
bit error rate in the presence of jamming.
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1 Introduction

Families of binary sequences have served in practical CDMA systems, spread spectrum
systems, and broadband satellite communications [1]. It is desired that they have low
autocorrelation, low cross-correlation, and large linear span [2]. The Gold pairs [3], [4]
and bent function sequences [5] as well as the Kasami sequences [6]-[8] have desirable
correlation properties. However, these sequences have small values of linear span, except
the bent function sequences. The family of binary sequences [9] can also achieve large
linear span, but their correlation property or family size is inferior to that of Gold pairs
and the Kasami sequences

The linear span of a sequence is the lowest degree of the characteristic polynomials
that can generate the sequence. It is also called the linear complexity. A characteristic
polynomial f(x) = xn − cn−1x

n−1 − · · · − c1x− c0 generates a sequence {s(t)}, if there
exists the recursive relation

s(k + n) = cn−1s(k + n− 1)
+ · · ·+ c1s(k + 1) + c0s(k), k = 0, 1, · · · . (1)

In implementation, xnf(1/x) is the feedback polynomial of a linear feedback shift register
that generates the sequence {s(t)}. Applying the Berlekamp-Massey algorithm [10], a
sequence of the linear span l can be reconstructed from a portion of its length equal to
2l. In other words, the complexity to reconstruct or break a linear spreading sequence
is a linear function of its linear span. Therefore, communication systems prefer to have
sequences of very large linear span.

The generalized Kasami signal set [11] and the small set of Kasami sequences [6] have
the same optimal correlation properties. From the viewpoint of the interleaved sequences,
the construction of the generalized Kasami signal set uses ideal autocorrelation sequences
as its component sequences [11]. When the component sequences have large linear span,
the constructed sequences are expected to have large linear span.

Let trn
m(·) denote the trace function from the finite field F2n to its subfield F2m .

Define a class of binary sequences with period 2n − 1 as

sh(t)
= trm

1 {{trmk
m [(trn

mk(α
2t) + γhα(2mk+1)t)u]}r}

(2)

where n = 2mk, r = 2m−1 − 1, u = 1 + 2m + · · · + 2(k−2)m with gcd(u, 2mk − 1) = 1,
γh ∈ F2mk . This family of sequences is a novel subfamily of the generalized Kasami
signal set in [11].

This paper studies the linear span for the sequence family in Eq. (2). Section
2 gives necessary notations and preliminaries. Section 3 derives lower bounds on the
linear span of the sequences. It is proved that for k as its optimal values 3 ≤ k ≤ 5,
a majority of sequences in the family of Eq. (2) have linear spans at least O(n · 2

2n
3 ),

which is exponentially larger than the linear span of either the No sequences [12] or the
TN sequences [13]. Section 4 shows that a class of sequences with ideal autocorrelation
property also has large linear span. Section 5 concludes the study.
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2 Preliminaries

Let F be the family of M binary {0, 1} sequences of period N = 2n − 1 given by

F = {{sh(t), 0 ≤ t ≤ N − 1} | 0 ≤ h ≤ M − 1}. (3)

The cross correlation function of the sequences {sh(t)} and {sl(t)} in F is

Rh,l(τ) =
N−1∑
t=0

(−1)sh(t)−sl(t+τ) (4)

where 0 ≤ h, l ≤ M−1, 0 ≤ τ ≤ N−1, and t+τ is computed modulo N . The maximum
magnitude Rmax of the correlation values is

Rmax = max |Rh,l(τ)| (5)

where 0 ≤ h, l ≤ M − 1, 0 ≤ τ ≤ N − 1, and the cases of in-phase autocorrelations
(h = l and τ = 0) are excluded. A family of binary sequences of period 2n − 1 is said to
have optimal correlation property if Rmax ≤ 2

n
2 + 1. For h = l, Rh,l(τ), abbreviated by

Rh(τ), is the autocorrelation function of {sh(t)}. The sequence {sh(t)} is said to have
an ideal autocorrelation property if

Rh(τ) =
{

N if τ ≡ 0 modN ;
−1 otherwise.

(6)

Let F2n be the finite field with 2n elements, and n = em for some positive integers e
and m. The trace function trn

m(·) from F2n to F2m is defined by

trn
m(x) =

e−1∑
i=0

x2im
(7)

where x is an element in F2n .

The trace function has the following properties [14]:
i) trn

m(ax + by) = a · trn
m(x) + b · trn

m(y), for all a, b ∈ F2m , x, y ∈ F2n .
ii) trn

m(x2m
) = trn

m(x), for all x ∈ F2n .
iii) trn

1 (x) = trm
1 (trn

m(x)), for all x ∈ F2n .

The operation of multiplying by 2 divides the integers modulo 2m−1 into sets called
the cyclotomic cosets modulo 2m − 1 [15]. The cyclotomic coset containing s is {s, 2s,
22s, · · ·, 2es−1s}, where es is the smallest positive integer such that 2ess ≡ s (mod
2m − 1). Furthermore, es divides m, and es = m for m prime and s 6≡ 0 (mod 2m − 1).
The smallest positive integer in the cyclotomic coset {s, 2s, 22s, · · · , 2es−1s} is called the
coset leader [15].

For two integers a and b with a ≤ b, let [a, b] be the interval consisting of all integer
c with a ≤ c ≤ b, and the length is b − a + 1. When a = b, [a, b] is called a single
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point interval and written as [a]. Two intervals [a, b] and [c, d] are un-incorporative if
b+2 ≤ c or d+2 ≤ a. A set of several pairwisely un-incorporative non-negative intervals
{[aj , bj ] | j ∈ J} determines a positive integer

∑
j∈J

∑
x∈[aj ,bj ]

2x, where J is an index set. For

a positive integer c, there exists an index set K consisting of non-negative integers such
that c =

∑
k∈K

2k, which determines a set of un-incorporative intervals {[aj , bj ] | j ∈ J}

such that
⋃

j∈J [aj , bj ] = K. This fact will be used in derivation of the main result in
this paper.

The following notations are used in the rest of this paper:

• m, k, and n: positive integers, n = 2mk;

• F2n : the finite field with 2n elements;

• α: a primitive element of F2n ;

• Γ(m): the set consisting of all non-zero coset leaders modulo 2m − 1;

• Ci = {i2j (mod 2m − 1) | j = 0, 1, · · · ,m − 1}, i.e., the cyclotomic coset modulo
2m − 1 containing the element i;

• ei = |Ci|;

• Zp: a residue ring of integers modulo p;

• V = {0, 1, · · · , k − 1}, where k is a positive integer;

• V t = V × V × · · · × V is the Cartesian product of t copies of V ;

• w(i): the weight of integer i, i.e., the number of ones in the coefficients of the
binary expansion of i;

• bzc: the largest integer not exceeding z;

• [a, b]: the integer interval consisting of all integers c with a ≤ c ≤ b.

• γ0 = 0, γ1, · · · , γ2mk−1: all 2mk elements of the field F2mk .

Define a family
F = {{sh(t)}0≤t<2n−1 | 0 ≤ h ≤ 2mk − 1} (8)

of 2mk binary sequences of period N = 2n − 1, where

sh(t)
= trm

1 {{trmk
m [(trn

mk(α
2t) + γhα(2mk+1)t)u]}r}

(9)

and integers 1 ≤ u ≤ 2mk − 1, 1 ≤ r ≤ 2m − 1 are relatively prime to 2mk − 1, 2m − 1,
respectively.
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Since trm
1 {[trmk

m (βut)]r} is a sequence with ideal autocorrelation for a primitive ele-
ment β in F2mk , F is a set of sequence with optimal correlation, i.e., satisfying the Welch
bound [16]. Furthermore, Rh,k(τ) ∈ {−1, 2

n
2 − 1,−2

n
2 − 1} for any out-of-phase shift

(h, k, τ) (h 6= k or τ 6= 0).
The paper provides a lower bound on the linear span of the family F with the

parameters r = 2m−1 − 1 and u = 1 + 2m + · · ·+ 2(k−2)m. In Section 3, we will consider
a general case where

sh(t)
=

∑
i∈I{trmk

m [(trn
mk(α

2t) + γhα(2mk+1)t)u]}i (10)

where I ⊆ {1, 2, · · · , 2m − 2} is the index set such that the sequence∑
i∈I

[trmk
m (βut)]i (11)

has ideal autocorrelation property and r = 2m−1 − 1 ∈ I. A lower bound of the linear
span for the general case is analyzed. When I = Cr, the sequence in Eq. (10) is the
same as that in Eq. (9). Thus, the lower bound on the linear span of the family F is
obtained.

3 Linear span of sequences

This section proves that sequences in the family F have large linear span. Key [17]
described a method for determining the linear span of a binary sequence with period
2n − 1. The linear span of {sh(t)}0≤t<2n−1, denoted by LS({sh(t)}), can be determined
by expanding the expression of sh(t) as a polynomial in αt of degree less than 2n − 1
and then counting the number of monomials in αt with nonzero coefficients occurring in
the expansion. This technique will be applied to determine the linear span of sequences
in family F .

Denote each exponent i ∈ I in Eq. (10) as

i = 2i1 + 2i2 + · · ·+ 2iw(i) (12)

where 0 ≤ i1 < i2 < · · · < iw(i) ≤ m− 1.
Let x = αt and y = x2mk−1. Substituting Eq. (12) into Eq. (10). Then sh(t) can be

7



written as
sh(t)

=
∑
i∈I

[
k−1∑
v=0

(α2t + γhα(2mk+1)t+

α2mk+1t)u2mv
]i

=
∑
i∈I

(
k−1∑
v=0

[x2(1 + γhy + y2)]u·2
mv

)i

=
∑
i∈I

w(i)∏
j=1

k−1∑
v=0

[x2(1 + γhy + y2)]u·2
mv+ij

=
∑
i∈I

∑
v∈V w(i)

[x2(1 + γhy + y2)]δ(i,v)

(13)

where V = {0, 1, · · · , k − 1}, v = (v1, v2, · · · , vw(i)) ∈ V w(i), and

δ(i, v) =
w(i)∑
j=1

u · 2mvj+ij . (14)

We can now count the number of monomials in αt with nonzero coefficients occurring
in right side of Eq. (13), similar to the proof for Lemma 1 from [13].

Lemma 1: For different pairs (i, v) and (i′, v′), there is no monomial that appears
with nonzero coefficients in the expansions of both (x2(1 + γy + y2))δ(i,v) and (x2(1 +
γy + y2))δ(i′,v′).

Let ρ(i, v) denote the number of monomials in y appearing in the expansion of (1 +
γhy + y2)δ(i,v) with nonzero coefficients. By Eq. (13) and Lemma 1, one has

LS({sh(t)}) =
∑
i∈I

∑
v∈V w(i)

ρ(i, v). (15)

Furthermore, Eq. (15) can be written as follows.
Proposition 1:

LS({sh(t)}) =
∑

i∈I∩Γ(m)

∑
v∈V w(i)

ei · ρ(i, v). (16)

Proof: The index set I is a union of several cyclotomic cosets, i.e., I = ∪i∈I∩Γ(m)Ci.
To prove Eq. (16), it is sufficient to show that∑

v∈V w(i)

ρ(i, v) =
∑

v∈V w(i′)

ρ(i′, v) (17)

holds for any i, i′ ∈ I with i ≡ 2i′ mod(2m − 1).
In Eq. (13), let

∆(x)

=
k−1∑
v=0

(x2 + γhx(2mk+1) + x2mk+1
)u2mv

= trmk
m [(x2(1 + γhy + y2))u].

8



For any x ∈ F2n , ∆(x) ∈ F2m and hence ∆(x)i = (∆(x)i′)2 if i ≡ 2i′ mod(2m− 1). From
Eq. (13), one has

∆(x)i =
∑

v∈V w(i)

[x2(1 + γhy + y2)]δ(i,v),

and then ∑
v∈V w(i)

[x2(1 + γhy + y2)]δ(i,v)

= {
∑

v∈V w(i′)
[x2(1 + γhy + y2)]δ(i

′,v)}2.

Since (∆(x)i′)2 and ∆(x)i′ have the same number of nonzero monomials in their expan-
sions, comparing the numbers of nonzero monomials in the expansions of the both sides
of the above equality, Eq. (17) holds.

By Proposition 1, the linear span can be determined by finding ρ(i, v) for all i ∈
I ∩ Γ(m) and v ∈ V w(i).

The number of nonzero monomials in the expansion of (1 + γhy + y2)j is determined
for j < 2mk − 1 [12]. When j ≥ 2mk − 1, we can replace j with j mod(2mk − 1). Then,
ρ(i, v) equals to the number of nonzero monomials in the expansion of (1+γhy+y2)δ′(i,v),
where δ′(i, v) is the remainder of δ(i, v) modulo 2mk − 1.

For γh 6= 0, define εh = −1 if the quadratic y2 + γh · y +1 = 0 is reducible over F2mk ,
and εh = 1 otherwise. Let ch be an integer with 0 ≤ ch ≤ 2mk−1 such that

δh =

{
αch(2mk+1) if εh = −1
αch(2mk−1) if εh = 1

(18)

is a root of y2 + γh · y + 1 = 0. Let gh = gcd(ch, 2mk + εh). Then, gh < 2mk−1 [12].
Let R(i, v) be the total number of 1-runs occurring within the binary expansion of

δ′(i, v), and L(i, v, j) be the length of the j-th 1-run, 1 ≤ j ≤ R(i, v), with the runs
being consecutively numbered from the least to the most significant bits. Then, δ′(i, v)
can be written as

δ′(i, v) =
R(i,v)∑
j=1

2dj · (
L(i,v,j)∑

l=0

2l),

where dj denotes the lowest exponent of 2 associated with the j-th 1-run.
By Theorem 2 in [12], the number of monomials with nonzero coefficients appearing

in the expansion of (1 + γhy + y2)δ′(i,v) is then

ρ(i, v)

=
R(i,v)∏
j=1

{2L(i,v, j)+1 − 1− 2b (2L(i,v, j)−1)gh

2mk+εh
c}. (19)

When γh = 0, one has
ρ(i, v) = 2τ(i,v) (20)

9



where τ(i, v) is the weight of δ′(i, v). It was proved in [12] that ρ(i, v) is always larger
for γh 6= 0 than for γh = 0. Thus, the linear span of the ideal autocorrelation sequence
{s0(t)} is always less than that of other sequences in the family F .

A run in a binary sequence is a subsequence consisting of consecutive 0s or 1s, which
is neither preceded nor succeeded [18]. Run length is the number of symbols in a run
and can provide useful information to analyze the properties of the sequence. In order to
measure the value of ρ(i, v), run lengths related to Eq. (19) deserve further consideration.
Let

u = 1 + 2m + · · ·+ 2(k−2)m k ≥ 2. (21)

Then

δ(i, v) =
w(i)∑
j=1

u · 2mvj+ij =
w(i)∑
j=1

k−2∑
l=0

2m(vj+l)+ij . (22)

Lemma 2: Let cj,l be the remainder of vj + l modulo k for 1 ≤ j ≤ w(i) and
0 ≤ l ≤ k − 2. Then

δ′(i, v) =
w(i)∑
j=1

k−2∑
l=0

2mcj,l+ij . (23)

Proof: Since 2m(vj+l) ≡ 2mcj,l mod(2mk − 1), δ(i, v) ≡ δ′(i, v) mod (2mk − 1).
For a fixed j, any two elements of {vj + l | 0 ≤ l ≤ k − 2} are pairwise incongruent

modulo k. Then {cj,l | 0 ≤ l ≤ k−2} are pairwise different and take values of k, k−1, · · ·,
and 1 for a maximal summation. Hence

w(i)∑
j=1

k−2∑
l=0

2mcj,l+ij =
w(i)∑
j=1

2ij
k−2∑
l=0

2mcj,l

≤
w(i)∑
j=1

2ij
k−1∑
l=1

2ml

≤ (2m − 1) · 2mk−2m

2m−1

< 2mk − 1.

Since δ′(i, v) is the remainder of δ(i, v) modulo 2mk − 1, Eq. (23) holds.
From the proof of Lemma 2 and Eq. (23), the weight of δ′(i, v) can be written as

τ(i, v) = (k − 1) · w(i). (24)

To guarantee the period of {sh(t)} reaching 2n−1, the parameter u must be relatively
prime to 2mk − 1. The following lemma gives such an integer.

Lemma 3: Let k ≥ 2 and u be defined as Eq. (21). Then

gcd(u, 2mk − 1) = gcd(k − 1, 2m − 1).

Proof: Since

2mk − 1− (22m − 2m)(1 + 2m + · · ·+ 2(k−2)m) = 2m − 1

10



and
1 + 2m + · · ·+ 2(k−2)m = k − 1(mod 2m − 1),

one has
gcd(u, 2mk − 1) = gcd(u, 2m − 1) = gcd(k − 1, 2m − 1).

From this point on, we assume gcd(k − 1, 2m − 1) = 1. Then, gcd(u, 2mk − 1) = 1.
To simplify Eq. (19), we consider a subfamily of F as

F ′ = {{s0(t)}, {sh(t)} : h 6= 0,

gh < 2mk+εh
2m−1+εh

and 0 ≤ ch ≤ 2mk−1}. (25)

We will derive a lower bound for linear spans of sequences in this subfamily. Let φ(t) be
the Euler’s phi function. The size of the subfamily F ′ is given in [13] as

|F ′| = (
∑

t|2mk+1

t>2m−1

φ(t) +
∑

t|2mk−1

t>2m−1

φ(t))/2 + 1.
(26)

For a sequence {sh(t)} in F ′ with h 6= 0, we have

ρ(i, v) =
R(i,v)∏
j=1

{2L(i,v, j)+1 − 1} (27)

for any i ∈ I and v ∈ V w(i). By analyzing run intervals for exponents, a lower bound on∑
v∈V w(i)

ρ(i, v) for some i is estimated as follows.

For 1 ≤ t ≤ m− 1, let i(t) =
t∑

j=1
2j−1 with the weight t.

Lemma 4: Let 1 ≤ t ≤ m− 1. Then
(1) For γh = 0, ∑

v∈V t

ρ(i(t), v) = (2k−1k)t.

(2) For γh 6= 0, ∑
v∈V t

ρ(i(t), v) > 3k−1k((3k − 1)2k−2)t−1.

Proof: (1) The conclusion follows that for each v ∈ V t, ρ(i(t), v) = 2(k−1)t by Eq.
(20) and Eq. (24).

(2) Assume γh 6= 0. We then establish a lower bound on
∑

v′∈V t+1

ρ(i(t+1), v′)/
∑

v∈V t

ρ(i(t), v)

for 1 ≤ t ≤ m− 2 and then deduce the conclusion.
For any v = (v1, · · · , vt) ∈ V t and vt+1 ∈ V , let v′ = (v1, · · · , vt, vt+1) ∈ V t+1. By

Eq. (22) and Eq. (23),

δ(i(t), v) =
t∑

j=1

k−2∑
l=0

2m(vj+l)+j−1

11



and

δ′(i(t), v) =
t∑

j=1

k−2∑
l=0

2mcj,l+j−1.

There are similar expressions for δ(i(t+1), v′) and δ′(i(t+1), v′). Define

δ̃(i(t), v) =
t∑

j=1

k−1∑
l=0

2mcj,l+j−1.

For fixed integers d and j (0 ≤ d ≤ k−1 and 1 ≤ j ≤ t), there exists a unique integer
l with 0 ≤ l ≤ k − 1 such that cj,l = d. This indicates that all run intervals of δ̃(i(t), v)
are

[0, t− 1], [m,m + t− 1], · · · ,
[m(k − 1),m(k − 1) + t− 1].

(28)

Similarly, the run intervals of δ̃(i(t+1), v′) are

[0, t], [m,m + t], · · · , [m(k − 1),m(k − 1) + t].

By deleting all terms of the form 2mcj,k−1+j−1 (1 ≤ j ≤ t) from the binary expansion
of δ̃(i(t), v), the binary expansion of δ′(i(t), v) is obtained. Thus, the run intervals of
δ′(i(t), v) can be obtained by deleting the integers mcj,k−1 + j − 1 (1 ≤ j ≤ t) from the
run intervals in Eq. (28).

The run interval of δ′(i(t), v) is called a type-I interval if it contains an integer of
form mct,l + t− 1, where 0 ≤ l ≤ k − 2; otherwise, it is called a type-II interval. Thus,
δ′(i(t), v) has exactly (k − 1) run intervals of type-I. Let ul denote the length of the run
interval containing mct,l + t− 1.

When vt+1 = vt, for any 0 ≤ l ≤ k − 1, one has

vt+1 + l = vt + l and mct+1,l + t = (mct,l + t− 1) + 1.

This means that the length of each type-I run interval of δ′(i(t+1), v′) is larger by 1 than
that of a corresponding type-I run interval of δ′(i(t), v), and that all type-II run intervals
of δ′(i(t+1), v′) coincide with that of δ′(i(t), v). (Example 1 (1) illustrates this.) Thus,

ρ(i(t+1),v′)
ρ(i(t),v)

=
k−2∏
l=0

2ul+1+1−1
2ul+1−1

>
k−2∏
l=0

2 = 2k−1.

(29)

When vt+1 6= vt, one has

mct+1,l′ + t = (mct,l + t− 1) + 1

if and only if
l′ = l + vt − vt+1(mod k). (30)
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Let l0 (0 ≤ l0 ≤ k − 1) be the unique solution of

l + vt − vt+1 = k − 1(mod k). (31)

Then 0 ≤ l0 ≤ k − 2.
For any 0 ≤ l ≤ k−2 with l 6= l0, let 0 ≤ l′ ≤ k−2 be determined by Eq. (30). Then

among the run intervals of δ′(i(t+1), v′), the length of the interval containing the integer
mct+1,l′ + t is larger by 1 than that of the interval of δ′(i(t), v) containing mct,l + t− 1.
On the other hand, the interval of δ′(i(t), v) containing the integer mct,l0 + t − 1 is
identical to a corresponding interval of δ′(i(t+1), v′) and so does each type-II interval
of δ′(i(t), v). Notice that the integer mct,k−1 + t is not in any interval of δ′(i(t), v),
and [mct,k−1 + t] = [mct+1,l1 + t] is a single-point run interval of δ′(i(t+1), v′), where
l1 = k− 1+ vt− vt+1(modk) and 0 ≤ l1 ≤ k− 2. ( Example 1 (2) illustrates this.) Thus,

ρ(i(t+1),v′)
ρ(i(t),v)

= (21+1 − 1)
k−2∏

l=0,l 6=l0

2ul+1+1−1
2ul+1−1

> 3 · 2k−2.

(32)

Applying Eq. (29) and Eq. (32), one has∑
v′∈V t+1

ρ(i(t+1), v′)

=
∑

v∈V t

(
∑

vt+1=vt

ρ(i(t+1), (v, vt+1))

+
∑

vt+1 6=vt

ρ(i(t+1), (v, vt+1))

>
∑

v∈V t

(2k−1 + (k − 1)3 · 2k−2)ρ(i(t), v)

= (3k − 1) · 2k−2
∑

v∈V t

ρ(i(t), v).

(33)

For v1 ∈ V = {0, 1, · · · , k − 1}, one has δ(1, v1) =
k−2∑
l=0

2m(v1+l) and δ′(1, v1) =

k−2∑
l=0

2mc1,l . There are exactly (k − 1) 1-runs of length 1. Thus,

ρ(i(1), v1) = ρ(1, v1) =
k−2∏
l=0

(21+1 − 1) = 3k−1,

and ∑
v1∈V

ρ(1, v1) = k · 3k−1. (34)

Applying Eq. (34), and Eq. (33) iteratively, one has Lemma 4 (2).

Example 1: (1) Suppose that m = 7, k = t = 4, v = (3, 0, 3, 1) and v′ = (3, 0, 3, 1, 1).
The run intervals of δ̃(i(5), v′) and δ̃(i(4), v) are

[0, 3], [7, 10], [14, 17], [21, 24]
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and
[0, 4], [7, 11], [14, 18], [21, 25],

respectively. A direct calculation will find the run intervals of δ(i(4), v) and δ(i(5), v′) are

[0, 2], [7, 10]∗, [15], [17]∗, [21], [23, 24]∗

and
[0, 2], [7, 11]∗, [15], [17, 18]∗, [21], [23, 25]∗,

respectively, where the intervals marked with ∗ are in type-I and type-II otherwise.
Obviously, the type-I run intervals [7, 11], [17, 18], and [23, 25] are of lengths larger

by 1 than [7, 10], [17], and [23, 24], respectively, and all type-II run intervals of δ(i(5), v′)
and δ(i(4), v) coincide.

(2) If v′ = (3, 0, 3, 1, 2), then the run intervals of δ(i(5), v′) are

[0, 2], [4], [7, 10]+, [15], [17, 18]∗, [21], [23, 25]∗.

Since l0 = k − 1 + vt+1 − vt = 0 (mod k), for 0 ≤ l ≤ k − 2 with l 6= l0, i.e., for l = 1 or
2, l′ = l + vt − vt+1 = 0 or 1. Then

{mct+1,l′ + t | l′ = 0, 2} = {18, 25},

and we get two type-I run intervals marked with ∗, i.e., [17, 18] and [23, 25]. Since
l1 = k − 1 + vt − vt+1 = 2(mod k), the remaining type-I run interval is the single-point
set [4]. The type-I interval of δ(i(4), v) containing mct,l0 + t − 1 = 10 is [7,10], it is a
type-II interval of δ(i(5), v′), which is marked with +. Other type-II run intervals of
δ(i(5), v′) and δ(i(4), v) coincide.

Since r = 2m−1 − 1 ∈ I, we have i(m−1) ∈ I ∩Γ(m). The size of the cyclotomic coset
containing i(m−1) is m. Applying Proposition 1 to such an index set I gives

LS({sh(t)}) ≥ m ·
∑

v∈V m−1

ρ(i(m−1), v). (35)

Applying Lemma 4 to Eq. (33), one has the theorem below.

Theorem 1: Let {sh(t)} ∈ F ′.
(1)

LS({s0(t)}) ≥ L0 = m(2k−1k)m−1.

(2) For h 6= 0,

LS({sh(t)}) > L1 = 3k−1mk[2k−2(3k − 1)]m−2.

Table 1 summarizes the family size and maximum linear span properties of some
families with optimal correlation properties. In the small set of Kasami sequences, all
sequences except the one with ideal autocorrelation property have the maximum linear

14



Table 1: Families of binary sequences of period 2n − 1 with optimal correlation Rmax =
2

n
2 + 1.

Family n Family size Maximum linear span

Bent function sequences 4m 2
n
2 ≥

(
n/2
n/4

)
2n/2

Kasami (small set) 2m 2
n
2

3n
2

No 2m 2
n
2 n(2

n
2 − 1)/2

TN 2mk 2
n
2 > 3n(3k − 1)m−2/2

Sequences we studied 2mk 2
n
2 > 3k−1n[2k−2(3k − 1)]m−2/2

span 3n/2 [6, 7]. The subfamily F ′ \ {{s0(t)}0≤t<2n−1} consists of the sequences with
maximum linear span in the proposed family F . The size of F ′ is completely determined
by the method proposed by Klapper [13]. This method in [13] is used to determine the
subfamilies with maximum linear span respectively in No sequences and TN sequences.
The subfamily sizes are listed as in Table 2. For a fixed value n and k ≥ 2, by Table 2,
one has ∑

t|2mk+1

t>2m−1

φ(t) +
∑

t|2mk−1

t>2m−1

φ(t)

=
∑

t|2n/2+1

t>2n/2k−1

φ(t) +
∑

t|2n/2−1

t>2n/2k−1

φ(t)

>
∑

t|2n/2+1

t>2n/2−1

φ(t) +
∑

t|2n/2−1

t>2n/2−1

φ(t).

(36)

This shows that among all families in Table 2, the subfamily size of the small set of
Kasami sequences is the largest and that of No sequences is the smallest. By a well-
known fact ∑

t|d

φ(t) = d, d > 0

from number theory, the cardinality of subfamily F ′\{{s0(t)}0≤t<2n−1} can be measured.
For m, k ≥ 2,

(
∑

t|2mk+1

t>2m−1

φ(t) +
∑

t|2mk−1

t>2m−1

φ(t))/2

= (2mk+1 −
∑

t|2mk+1

t≤2m−1

φ(t)−
∑

t|2mk−1

t≤2m−1

φ(t))/2

> 2mk − 2m−1 × 2m−1/2
= 2mk − 22m−3,

(37)
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Table 2: Family size of sequences with maximum linear span.

Family n Family Size

Kasami (Small set) 2m 2
n
2 − 1

No 2m (
∑

t|2m+1

t>2m−1

φ(t) +
∑

t|2m−1

t>2m−1

φ(t))/2

TN 2mk (
∑

t|2mk+1

t>2m−1

φ(t) +
∑

t|2mk−1

t>2m−1

φ(t))/2

The proposed family F 2mk (
∑

t|2mk+1

t>2m−1

φ(t) +
∑

t|2mk−1

t>2m−1

φ(t))/2

where the inequality holds since φ(t) < t and each factor of 2mk ± 1 is odd. The formula

(2mk − 22m−3)/2mk = 1− 2(2−k)m−3 ≥ 7/8 (38)

shows that F ′ consists of a majority of sequences in the family F if k ≥ 2.
The bounds for linear span of No sequences and TN sequences are O(n·4

n
4 ) and O(n·

5
n
4 ), respectively [12], [13]. More precisely, let UN = 2

n
2 · n/2 and UT = 9n · (16/3)

n
4
−3.

Then UN and UT are upper bounds on linear spans of No sequences and TN sequences.
For a large integer n, the lower bound L1 given in Theorem 1 is maximized when

k = 4. By Lemma 4, we choose k = 4 when m is odd and choose k = 3 or 5 when
m is even. Table 3 lists the bounds L0 and L1, and the bounds O(n · 2

2n
3 ), O(n · 44

n
8 )

and O(n · 112
n
10 ), which are exponentially larger than UN and UT , are given by taking

k = 3, 4, 5, respectively.

4 An extension to sequences with ideal autocorrelation

This section tightens the bound in Theorem 1 and proves that a class of ideal auto-
correlation sequences has large linear span. Most of the existing ideal autocorrelation
sequences have very small linear span. Legendre sequences of a prime period can achieve
an upper bound on linear span of binary ideal autocorrelation sequences [19].

Let p = 2m − 1 be a Mersenne prime for some prime m ≥ 3. A Legendre sequence of
period p is defined as {a(t)} where

a(t) ={
0, if t is a quadratic residue modulo p;
1, otherwise.

(39)
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Table 3: The lower bound of linear span of sequences with period 2n − 1 in family F ′.

k 3 4 5

n 6m 8m 10m

L0 12
n
6 n/72 2

5n
8 n/256 80

n
10 n/800

L1 9n · 2
2n
3 /512 27n · 44

n
8 /3872 81n · 112

n
10 /25088

The Legendre sequence has ideal autocorrelation. Below is its trace representation.
Lemma 5: ([20]) Let γ be a primitive element of Zp. There is a primitive element β

of F2m such that

a(t) =

p−1
2m

−1∑
j=0

trm
1 (βγ2jt) (40)

is the trace representation of {a(t)}.
For ζ = 0 or 1, define two sequences {a(ζ)(t)} where

a(ζ)(t) =

p−1
2m

−1∑
j=0

trm
1 (βtγ2j+ζ

). (41)

Then, {a(0)(t)} = {a(t)}, and {a(1)(t)} is the γ-decimation of {a(t)}. Therefore, both
sequences have ideal autocorrelation property.

Let k ≥ 2 and u = 1 + 2m + · · ·+ 2(k−2)m. Assume gcd(k − 1, p) = 1. We construct
sequences of ideal autocorrelation from {a(0)(t)} and {a(1)(t)} as follows. For ζ = 0 or
1, define

s(ζ)(t)

=
p−1
2m

−1∑
j=0

trm
1 ({trmk

m [(trn
mk(α

2t))u]}γ2j+ζ
).

(42)

Then, {sζ(t)} is an ideal autocorrelation sequence of period 22mk − 1 [11].

The following lemma is needed for a tighter bound on the linear span of {s(ζ)(t)}.
Lemma 6: (1) ([20]) When i varies from 0 to p−1

m − 1, γi runs through all the p−1
m

cyclotomic cosets of size m modulo p. For some integer j, γ
p−1
m = 2j .

(2) Among p−1
m cyclotomic cosets of size m modulo p, the number of cosets consisting

of integers of weight i is
(

m
i

)
/m.

Theorem 2: For either ζ = 0 or 1, the linear span of sequences defined as in Eq. (42)
satisfies

LS({s(ζ)(t)})
≥ 1

2 [(1 + 2k−1k)m − 1− (2k−1k)m].
(43)
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Proof: For ζ = 0 or 1, Proposition 1 together with Eq. (20) and Eq. (24) yields

LS({s(ζ)(t)}) =

p−1
2m

−1∑
j=0

m · (2k−1k)w(γ2j+ζ). (44)

Then
LS({s(0)(t)}) + LS({s(1)(t)})

=
p−1
2m

−1∑
j=0

m · [(2k−1k)w(γ2j) + (2k−1k)w(γ2j+1)]

=
p−1
m

−1∑
j=0

m · (2k−1k)w(γj)

=
(

m
1

)
· (2k−1k) +

(
m
2

)
· (2k−1k)2+

· · ·+
(

m
m−1

)
· (2k−1k)m−1

= (1 + 2k−1k)m − 1− (2k−1k)m.

Thus, Theorem 2 holds.
Remark: An analysis to L0 = m(2k−1k)m−1 shows that, for any given n, the bound

L0 is maximized only if k ≤ 6. In this case, if m ≥ 2k ·k +1, then the bound in Theorem
2 is tighter than that in Theorem 1. More precisely,

1
2 [(1 + 2k−1 · k)m − 1− (2k−1 · k)m]

≥ m(2k−1 · k)m−1 (45)

holds for k ≤ 6 and m ≥ 2kk + 1.
In Eq. (42), the parameter k ≥ 2. However, one can take k = 1 and define

s̃(ζ)(t) =

p−1
2m

−1∑
j=0

trm
1 ([tr2m

m (α2t)]γ
2j+ζ

) (46)

where ζ ∈ {0, 1}. One can get two ideal autocorrelation sequences of period 22m − 1,
and their linear span can be shown as

LS({s̃(ζ)(t)}) =

p−1
2m

−1∑
j=0

m · 2w(γ2j+ζ) (47)

by Proposition 1 and Eq. (20). An analysis similar to Theorem 2 shows either {s̃(0)(t)}
or {s̃(1)(t)} has linear span not less than (3m − 1− 2m)/2.

Example 2: Let {a(t) =
8∑

j=0
tr7

1(α
32jt)} be a Legendre sequence of period 127 and

{b(t) = a(3t)} be its 3-decimation. The linear span of the sequence {s(1)(t)} derived
from {b(t)} is 1232 > 1029 = (37 − 1− 27)/2.
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5 Conclusions

This paper finds a new sub-family of the generalized Kasami signal set in [11], which
was defined by

Γ = {g(trn
n/2(x

2) + βx2mk+1),
β ∈ F2mk , x ∈ F ∗

2n}.
(48)

Here, g(x) = trm
1 {[trmk

m (xu)]r}, r = 2m−1−1, and u = 1+2m+· · ·+2(k−2)m. Generalized
Kasami signal sets have optimal correlation property with respect to the Welch bound
[16], and the linear span of sequences in Γ depends on g(x). For suitable parameters,
we prove that a majority of sequences in the family F in Eq. (2) can have linear
spans exponentially larger than that of Kasami sequences (small set), No sequences and
TN sequences. When implemented in future spread spectrum systems, the increased
linear span of Generalized Kasami sequences can help to make it significantly harder
for unauthorized terminals to synthesize spreading codes, and hence increase security of
future spread spectrum systems.

6 Other Research Performed

The PI also studied free-space laser communications [21]-[24] and multiband radio transceivers
with a shared RF frontend [25]-[27] during the funding period.
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